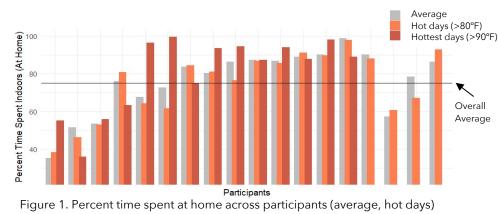
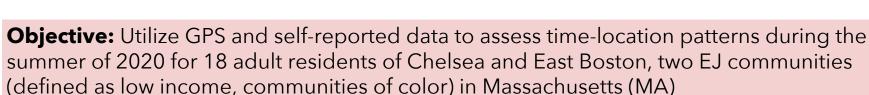

Assessing Time Spent in Various Microenvironments in Two **Urban Environmental Justice Communities**

McIntyre AM¹, Milando C¹, Black-Ingersoll F¹, Heidari L¹, Botana P¹, López-Hernández I², Scammell MK¹, Fabian MP¹ 1. Department of Environmental Health, Boston University School of Public Health, Boston, MA 2. GreenRoots, Inc., Chelsea, MA


- Background Limited use of time-activity Real-time data on where global positioning systems people spend their time (GPS) data with self-report informs understanding of data to estimate time spent environmental exposures in microenvironments ΟΟ Ο Questionnaires and self
 - reported data used to characterize time spent in microenvironments
 - Recall bias, exposure misclassification occur

Lack of data for environmental justice (EJ) study populations


- Approximately 80% of participants' time spent in Chelsea and East Boston (Fig. 2)
- Participants within 40m of their home location for average of 75% (range: 35-99%) of time, 16 of 18 spending >70% of time at home GPS results consistent with self-reported data: participants reported spending most of time
- indoors in their homes
- Less than 3% of time spent at either retail establishments or outdoors in green spaces Potentially more time spent at home on high temperature days (Fig. 1)

Acknowledgements

The C-HEAT Team: GreenRoots, Inc., Boston University School of Public Health, the City of Chelsea, C-HEAT Advisory Team, Chelsea and East Boston Study participants. Work supported by the Barr Foundation, National Science Foundation Research Traineeship (NRT grant to Boston University (DGE 1735087)

Data Collection

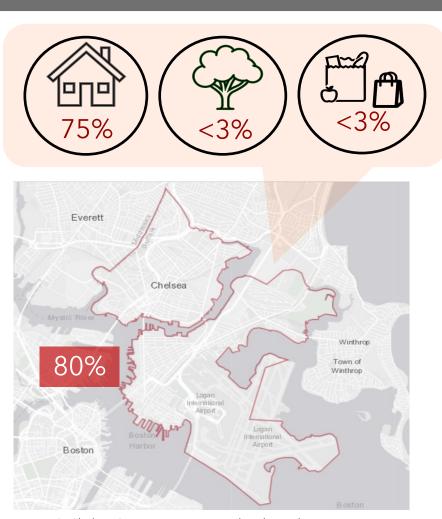
Data utilized from Chelsea and East Boston Heat Study Summer 2020 field study participants

- 112,241 GPS points collected from 18 Tile Mates /Tile smartphone application with 97,447 points meeting data quality checks
- Sampling protocol of 1 point per 10 minutes
- Secure database created with Tile application programming interface (API), Microsoft Graph API and Microsoft Azure FunctionApp

Self-reported questionnaire data collected from study participants on how their time was spent

Geospatial data secured from MassGIS Protected and Open Space shapefile, ESRI ArcGIS Business Analyst Database

Geospatial Analysis



- Geocoded resident addresses, digitized household footprints
- Created greenspace and retail store layers
- Built 25- and 40-meter buffers around households (potential GPS signal error)
- Buffer sensitivity checks

- Spatially joined GPS and microenvironment data layers for overall, weekday vs. weekend, and high temperature days Generated summary statistics for location trends

Results

BOSTO UNIVERSITY

Figure 2: Chelsea & East Boston, MA outlined in red. Map creating using MassGIS, Esri, HERE, Garmin, USGS, EPA, NPS | Esri, HERE, NPS

Discussion & Conclusion

Explored strengths and limitations using mixed-methods and multiple data streams:

n	Questionnaire Data	Geospatial Data
e ie	Community engagement, participant perspectives	Powerful and understandable visualizations, data integration
ed, r	Recall bias, data show broader trends, lack of in-depth responses	Underlying data limitations, spatial scale, processing power required

Successfully developed methods to capture time spent in microenvironments during hot summer months of 2020

- COVID 19 may have impacted mobility
- Observed need for at-home interventions to reduce heat exposure
- Future research needed to explore GPS-based exposure assessment, with inclusion of sociodemographic and EJ data

References

Breen, M. S., Long, T. C., Schultz, B. D., Crooks, J., Breen, M., Langstaff, J. E., & Buckley, T. J. 2014. GPS-b. Breen, M. S., Long, T. C., Schultz, B. D., Crooks, J., Breen, M., Langstaft, J. E., & Buckley, T. J. 2014. GPS-based microenvironment tracker (MicroTrac) model to estimate time-location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina. Journal of Exposure Science & Environmental Epidemiology, 24(4), 412-420; Hoffman, J. S., Shandas, V., & Pendleton, N. 2020. The effects of historical housing policies on resident exposure to intra-urban heat: A study of 108 US urban areas. Climate, 8(1), 12; Kim, T., Lee, K., Yang, W., & DoY U.S. 2012. A new analytical method for the classification of time-location data obtained from the global positioning system (GPS). Journal of Environmental Monitoring, 14(8), 2270-2274; Klous, G., Smit, L. A., Borlée, F., Coutinho, R. A., Kretzschmar, M. E., Heederik, D. J., & Huss, A. 2017. Mobility assessment for a rural population in the Netherlands using GPS measurements. International journal of health geographics, 16(1), 1-13; Nethery, E., Mallach, G., Rainham, D., Goldberg, M. S., & Wheeler, A. J. 2014. Using Global Positioning Systems (GPS) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: an automated method. Environmental Health, 13(1), 1-11. Data from: Chelsea & East Boston Heat Study, MassGIS Protected and Open Space Database, ESRI Business Analyst Database. Analysis utilized ArcGIS ArcPro (2.7.1).